Natural Action Recognition Using Invariant 3D Motion Encoding
نویسندگان
چکیده
We investigate the recognition of actions “in the wild” using 3D motion information. The lack of control over (and knowledge of) the camera configuration, exacerbates this already challenging task, by introducing systematic projective inconsistencies between 3D motion fields, hugely increasing intra-class variance. By introducing a robust, sequence based, stereo calibration technique, we reduce these inconsistencies from fully projective to a simple similarity transform. We then introduce motion encoding techniques which provide the necessary scale invariance, along with additional invariances to changes in camera viewpoint. On the recent Hollywood 3D natural action recognition dataset, we show improvements of 40% over previous state-of-the-art techniques based on implicit motion encoding. We also demonstrate that our robust sequence calibration simplifies the task of recognising actions, leading to recognition rates 2.5 times those for the same technique without calibration. In addition, the sequence calibrations are made available.
منابع مشابه
3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملThe estimation and use of 3D information, for natural human action recognition
The aim of this thesis, is to develop estimation and encoding techniques for 3D information, which are applicable in a range of vision tasks. Particular emphasis is given to the task of natural action recognition. This “in the wild” recognition, favours algorithms with broad generalisation capabilities, as no constraints are placed on either the actor, or the setting. This leads to huge intra-c...
متن کاملA fast, invariant representation for human action in the visual system.
Humans can effortlessly recognize others' actions in the presence of complex transformations, such as changes in viewpoint. Several studies have located the regions in the brain involved in invariant action recognition; however, the underlying neural computations remain poorly understood. We use magnetoencephalography decoding and a data set of well-controlled, naturalistic videos of five actio...
متن کاملStudy of Human Action Recognition Based on Improved Spatio-temporal Features
Most of the existed action recognition methods mainly utilize spatio-temporal descriptors of single interest point ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information (PDI) of interest points,a novel motion descriptor is proposed in this paper. The proposed method detec...
متن کاملParsing 3D motion trajectory for gesture recognition
Motion trajectories have been widely used for gesture recognition. An effective representation of 3D motion trajectory is important for capturing and recognizing complex motion patterns. In this paper, we propose a view invariant hierarchical parsing method for free form 3D motion trajectory representation. The raw motion trajectory is first parsed into four types of trajectory primitives based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014